
02/02/2016

A quick intro to running LArSoft
Karl Warburton with help from Tingjun Yang

1

Guide to this guide
✤ A lot of the information shown here is taken from;

✤ The dunetpc cheat sheet, which is here.
✤ The LArSoft guide, which is here.
✤ The 35 ton getting start guide, which is here.
✤ The LArSoft concepts webpage, which is here.
✤ An art/LArSoft course in June ‘15, which is here.

✤ LArSoft relies on the art framework which was
developed by the Fermilab scientific computing
division for intensity frontier experiments.
✤ A useful (though HUGE) handbook to help use art

can be found here.
2

Some steps to running LArSoft

✤ Basic running is very similar to NoVA-ART as they
both depend on art and use Fermilab resources.

✤ FHiCL (fcl) and how to use it
✤ Where to save files
✤ Running on the batch

✤ Job submission - how to do it, and limits
✤ Project python

✤ Reconstruction in LArSoft
✤ Analysis in LArSoft

FHiCL

✤ Fermilab Hierarchial Command Language, used by a lot of
experiments based at Fermilab.

✤ Some key feature in FHiCL files;
✤ Previously defined configurations for modules and

services are included with #include statements.
✤ The services you want to include are defined in the

services block, services:{ }
✤ The source you want to use is defined in the source

block, source: { }
✤ The output you want to create is defined in the output

block, outputs: { }
✤ The physics you want to do is defined in the physics

block, physics: { }

Some basic FHiCL rules
✤ You have to define a process name for each ‘job.’ This can’t be

repeated (can’t run reco on the same file twice) and can’t contain
things like _

✤ Parameter set names can’t contain numbers, ., /, * but may
contain _

✤ All strings must be encompassed by “dfsf”
✤ Vectors are defined as [a, b, c]
✤ You pick out configurations from the include files using

@local::< config name >
✤ You can override configurations in the fcl file with commands

like
✤ physics.producers.pmtrackdc.HitModuleLabel:

"trkshowersplitdc”
✤ The last value in the fcl file is the one used. By extension

command line option take precedence over ones in fcl files.

Command line options

✤ Lar –h has more options but the most important are
outlined in the NOvA-ART wiki

✤ Jobs are ran exactly the same as NOvA-ART, but using
lar instead of nova.
✤ lar -c prodsingle_dune35t.fcl

Example fcl file – prodsingle_dune35t

Example fcl file – prodsingle_dune35t

standard_reco_dune35t.fcl

standard_reco_dune35t.fcl

standard_reco_dune35t.fcl

Where to save things I
✤ nashome/p/user

✤ Not sure about space, gets backed up, but not mounted
on the gird machines.

✤ I for one do nothing here…
✤ /dune/app area

✤ Each user has 200 GB, but IS NOT designed to hold data.
✤ Fill up semi-regularly if people save a lot of data there.
✤ Is backed up ‘snapshot’ every day (I think).

✤ /dune/data/ and /dune/data2/
✤ Each user has 200 GB on each, IS designed to hold data.
✤ Is good for analysis files that you definitely want to keep

hold off.
✤ Only the app areas are mounted on the grid.

Where to save things II

✤ /pnfs/dune/persistent/
✤ Unlimited storage, basically forever but if it fills up, gets

close, or you’re using lots of space people will chase you.
✤ Good for the output of batch jobs you are likely to want to

keep.
✤ /pnfs/dune/scratch

✤ Unlimited storage, but only lasts ~1 month.
✤ Good for the output of batch jobs you are unlikely to want to

keep forever.
✤ DO NOT MOVE BETWEEN PERSISTENT AND SCRATCH

✤ It will keep the properties it had before, ie a scratch file
moved to persistent will be deleted after a month. You need
to copy things to prevent this.

✤ Neither are mounted on the grid, you must copy files you want
to process to the worker node – scp.

Job submission

✤ The Fermilab grid uses the jobsub client, the basic
commands you will want to use are outlined below.

✤ To run things on the grid as dune you must be on the
DUNE VO. This should be done by default, but if not
then either submit a service desk ticket, or ask Tom
Junk.

✤ An example of how to submit two jobs is below.

Job submission
✤ Using the –N XX option

✤ Using the PROCESS variable can tell your shell script to
do specific things depending on which jobId it has.

✤ Storing things whilst on the grid
✤ Use the _CONDOR_SCRATCH_DIR
✤ Make a directory _CONDOR_SCRATCH_DIR/work

and ifdh cp files there. Then ifdh cp finished files once
the job is completed.

✤ The default memory limit is 2000 MB, you can request
more with the --memory=2048 option.

✤ You can request more time with –-expected_lifetime
✤ Jobs which exceed memory or lifetime will be held.

Example script to submit jobs

Project python

✤ A python script which takes away a lot of the hassle of
submitting jobs – in a similar vain to
submit_nova_art.py from what I can tell.

✤ There are two wiki’s covering it.
✤ One from larbatch which explains the structure

really well.
✤ One in dunetpc which is more of a functional

description of how to use it.
✤ Either submit on the command line

✤ project.py –h
✤ projectgui.py –-xml < XML > &

Reconstruction in LArSoft
✤ There was a protoDUNE working meeting at the end

of June ‘16. Lots of presentations about reconstruction.
✤ Tingjun – Overview
✤ Xin – Signal processing
✤ Xin – Wire cell
✤ Robert – Pattern recognition
✤ Joris – Pandora
✤ Dorota – PMATrack

✤ As it is the most general I am going to go through
Tingjuns talk, but I encourage you to look at the
others.

Analysis in dunetpc

✤ There is as yet no default analysis chain for dunetpc.
✤ There are some of mentions of trying to use something

similar to HIGHLAND which T2K uses.
✤ Currently there is an analysis module which makes a

flat ROOT TTree which aims to be the base of art
independent analyses.
✤ It is a very complicated module which aims to

maximize memory usage so it can run of the cluster.
✤ dunetpc/dune/AnaTree/

✤ HowToUseAnalysisTree.txt – description
✤ AnalysisTree_module.cc - module

